

upcomillas

upcomillas

Optimising the electrical infrastructure of MTSs to increase energy efficiency: when and where to install reversible substations

> Álvaro Jesús López López Ramón Rodríguez Pecharromán Antonio Fernández Cardador Paloma Cucala García

> > 13 June 2018

Energy flows in a DC-electrified MTS

The problem of limited receptivity

How could this be fixed? Improving or optimally operating the

electrical infrastructure

Institute for Research in Technology ICAI School of Engineering Álvaro Jesús López López 13 June 2018

Let's put some numbers to the problem...

- 19 km double-track line
- 23 stations → 860 m average inter-station

Electrical infrastructure and altitude of the case study

Institute for Research in Technology ICAI School of Engineering

Let's put some numbers to the problem...

- ATO speed profiles (flat-out)
- Speed limitations (max. line speed = 70 km/h)

Institute for Research in Technology ICAI School of Engineering

Preliminary analysis results

Regenerative braking → large **efficiency** increase (40 %)

Infrastructure improvements welcome!

Institute for Research in Technology ICAI School of Engineering Álvaro Jesús López López 13 June 2018

Preliminary analysis. Improvement techniques

Large rheostat losses → investment required → RISK

Important: tools and models to take right decisions

Our tool to assist decision taking

Institute for Research in Technology **ICAI School of Engineering**

13 June 2018

PONTIFICIA

High sensitivity to the traffic model

Necessary to include more scenarios

Institute for Research in Technology ICAI School of Engineering

Traffic model concept and concerns

Some figures in a typical optimisation process

	N ^o scenarios	Accuracy	Optimisation time (rough estimation)
Single-scenario	•	POOR!	13 hours
Traffic space		The highest	9.3 MONTHS
Representative scenarios		Good!	93 hours
Compressed Repr. Scen.	• • •	Still good!	18.6 hours

Institute for Research in Technology ICAI School of Engineering

Optimiser details

Álvaro Jesús López López 13 June 2018

12

Institute for Research in Technology ICAI School of Engineering

Headway weekly composition

Headway distributions

	Working day	Ferial day	Weekly total
Sparse headway (hours)	2	6	22
Off-peak headway (hours)	13	13	91
Peak headway (hours)	4	0	20

Institute for Research in Technology ICAI School of Engineering

Economic concerns

RS cost

$$C_{RS} = C_{Fixed} + \alpha_{PWR} \cdot P_{RS}$$

E.g.: 2-MW RS → 0.55 M€

Investment feasibility: Net Present Value

$$NPV = \sum_{t=1}^{T} \frac{ES_t}{(1+r)^t} - C_0$$

NPV $\geq 0 \rightarrow$ Feasible investment

14

Institute for Research in Technology ICAI School of Engineering

Search space analysis. Some savings curves

Energy Saving (MWh/week)

Institute for Research in Technology ICAI School of Engineering

The optimiser in action!

Institute for Research in Technology ICAI School of Engineering

Useful outcomes for operators

- Insights on the effect of traffic in receptivity

 and thus in achievable savings
- Methods and models to represent the traffic in any system
- Modular concept design
 - Optimiser, simulator & traffic model can be plugged into other concepts
- Uncertainty on investment return (and so risks) reduced

Thank you for your attention! Questions?

Instituto de Investigación Tecnológica C/ Santa Cruz de Marcenado, nº 26 28015 Madrid Tel +34 91 542 28 00 Fax + 34 91 542 31 76 info@iit.upcomillas.es

www.comillas.edu

