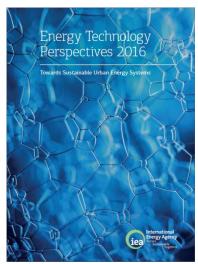
Insights on energy consumption and CO₂ emissions of railways emerging from the Railway Handbook 2015

Marine Gorner International Energy Agency

ERESS Forum 2016 Madrid, 25 May 2016


© OECD/IEA 2016

162

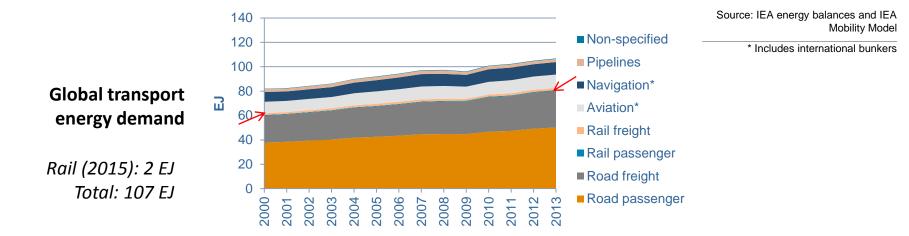
"The IEA is an autonomous organisation which works to ensure reliable, affordable and clean energy for its 29 member countries and beyond"

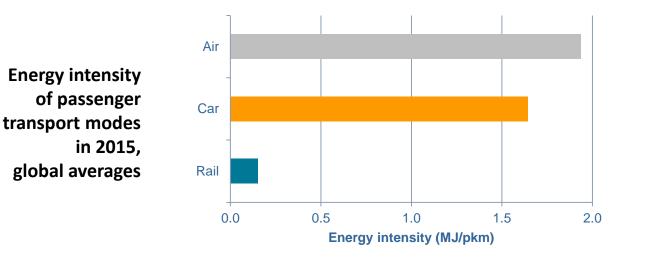
- In transport, development of the Mobility Model
 - Analytical tool used to elaborate the projections of transport activity, energy demand and CO₂ emissions in ETP since 2006
 - The foundation of transport-related analysis in the Sustainable Policy and Technology Directorate
 - An essential tool for transport-related activities on...
 - energy efficiency: Global Fuel Economy Initiative (GFEI)
 - energy technology: Electric Vehicle Initiative (EVI)
 - cooperative efforts: Railway Handbook on Energy Consumption and CO₂ emissions with UIC
 - 2015: extension of MoMo analytical capabilities to urban/non-urban energy use
 - implication for rail services energy use
 - Funded by "MoMo partners" private sector, academia and NGOs

Railway Handbook – Energy consumption and CO₂ emissions, 2015 and 2016 editions

- 2016: 5th year of collaboration between UIC and IEA
- in releasing a statistical pocketbook on rail network, activity, energy consumption and CO₂ emissions
 - 2016 Handbook to be released in September 2016 focus on progress toward energy efficiency targets
- Ongoing improvement of methodology and data consistency

Focus in 2015: energy efficiency in the rail sector


- Includes a review of the latest developments in technologies and operational tools for improving the energy efficiency of rail
- Data presented today are from the 2015 edition


Rail accounts for just a fraction of total transport energy use

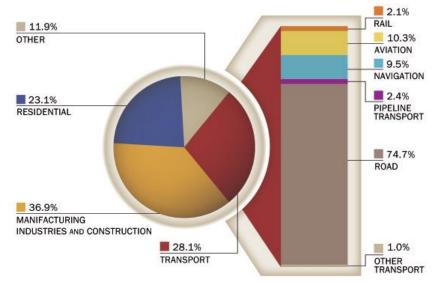
International Energy Agency

162

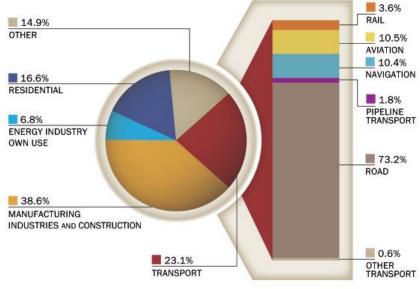
Rail is one of the most energy efficient transport modes

Source: IEA Mobility Model – outputs for ETP 2016

© OECD/IEA 2016



Key findings

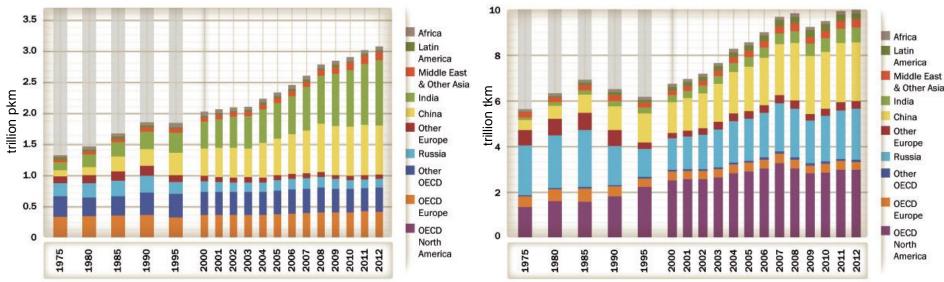

- Rail is already amongst the most energy efficient transport modes
- Energy intensity of passenger and freight trains is improving, but some indicators show a weakening trend in recent years
- Electric trains are the most efficient: electrification should be prioritized in high frequency portions of networks
- Diesel use is still relevant: continuous technological innovation of diesel trains is necessary
- High-speed rail is more efficient than intercity rail, despite higher speed, and than other alternatives (car, aviation): opportunity for more sustainable mobility

World, 2012 Energy

GHG emissions

Source: Elaboration by SusDef based on IEA Statistics "CO₂ emissions from fuel combustion"

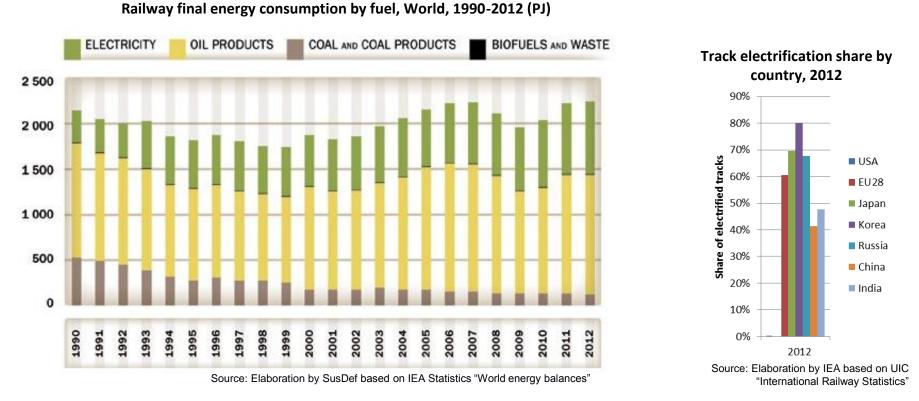
Electricity and heat emissions are reallocated to the end-use sectors. In transport, all the emissions from electricity/heat production are reallocated to rail.


Rail accounts for

- 3.6% of transport GHG emissions and 2% of the energy use
- 0.8% of total GHG emissions and 0.6% of energy use

Global rail activity

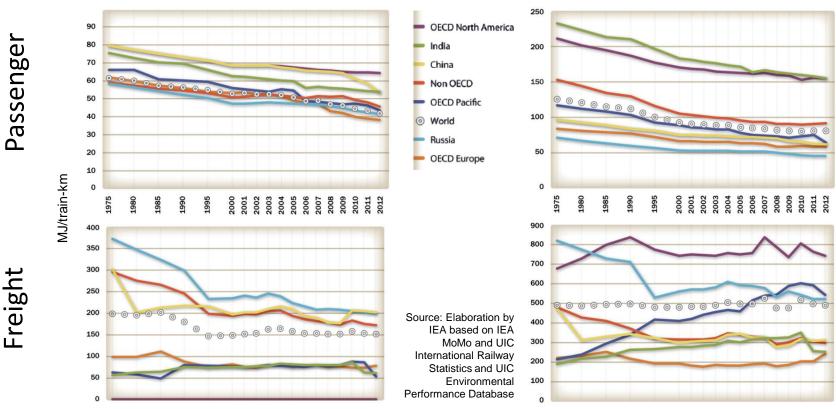
Passenger (excluding urban)


Source: Elaboration by IEA based on UIC "International Railway Statistics".

Freight

- Passenger rail travel increased 131% between 1975 and 2012
 - China and India: seven-fold increase 1975-2012
 - OECD: rail passenger activity stable since decades
- Freight rail up 78% since 1975, most relevant in North America, Russia and China
- India: 1000 billion pkm 650 billion tkm (2012)

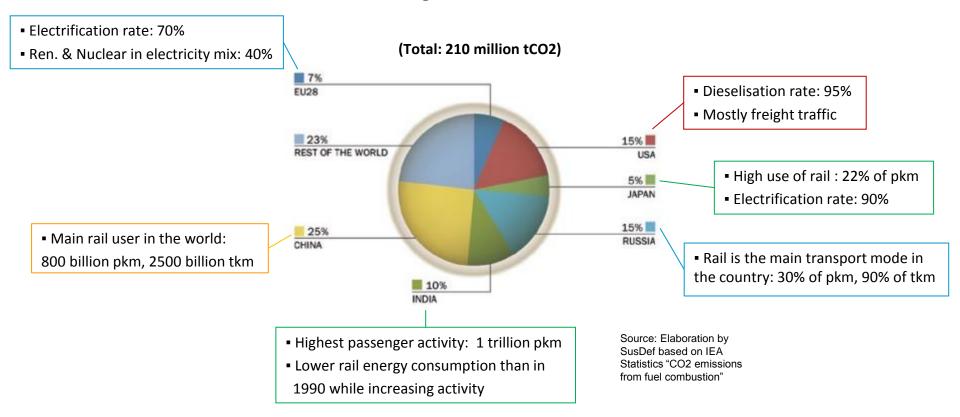
162


- In spite of a continuously growing trend in activity over 2 decades, the total energy consumption of rail services worlwide was comparable in 2012 to 1990 levels
- This is partly due to the progressive phasing out of inefficient coal powered locomotives to the benefit of electrification

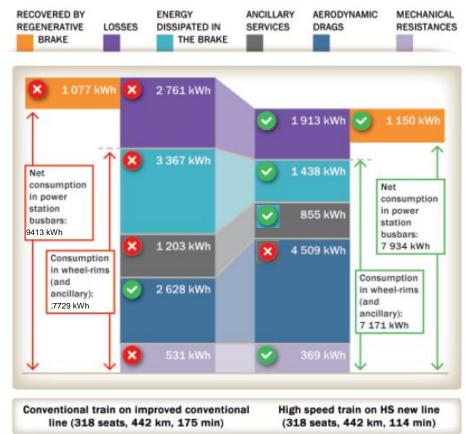
162

Energy intensity per vehicle-km

Diesel


Electric

- Energy intensities are way higher for diesel trains (global average about double), improvements in passenger diesel and freight have been stabilizing in recent years
- Methodology: matching information from IEA energy balances and UIC activity data
- Besides vehicle performance, country-specific characteristics play a part (vehicle composition, weight due to load)



iea

Share of railway CO₂ emissions by geographic area, 2012

Conventional and high-speed rail energy efficiency

Comparison of energy consumption between a conventional train and a highspeed train

iea

Source: Fundación de los ferrocarriles españoles (FFE) 2010, High speed, energy consumption and emissions, Study and research group for railway energy and emissions. Commissioned by UIC. Paris, 2010

International Energy Agency

- High-speed rail seems to be more efficient than intercity rail, despite higher speed (higher aerodynamic drag is offset by other savings)
- High-Speed rail is also more efficient per pkm than other alternatives such as car or aviation: opportunity for more sustainable mobility
- Main issue remains cost: need to make sure that HSR networks are highly used

lea

Case studies showing paths for improved energy efficiency described in the Railway Handbook

Vehicles and fuels	Technical operations	Benchmarking tools
Aerodynamics, engines, vehicle weight	Energy recovery from braking JR inter-vehicle energy exchange system	UIC/UNIFE standard: "Specification and verification of energy consumption for railway rolling stock"
Fuels Electric vs diesel cost assessment by Bombardier	Infrastructure management RZD "Elbrus" system	Retrofitting energy meters on electric trains
Hotel loads IR PV panels initiative	Eco-driving and driver advisory systems	plans for European operators: 25,000 energy meters by 2020
		DIESEL
300	1 400 000	
200	ĝ 1200 000	
100	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	
	52 E 5 800 000	
	<u>F</u> 600 000	
60	400 000	
40 20	400 000	
0		
0 50 100 150 200 25	0 300	6x DD coaches 9x SD coaches
TecRec 100_001 X (km) Source: UNIFE/UIC	ENERGY STRORAGE SYSTEM	Energy costs assessme Source: Bombard
SUB STATION	+ , -	SUB STATION
	CHARGE	1
		storage system
BR	AKING ACCELERATING	Source: Japan Railway Group

Summary and prospects for the rail sector

- Rail is one of the most energy efficient transport modes
- Electrification (ideally coupled with a low-carbon electricity mix) and better energy management (e.g. hotel loads, driving behaviour) can help making rail more sustainable
- High-speed rail can substitute to part of air and road travel, as a more sustainable alternative
- Interest in understanding better energy consumption in urban vs. non-urban rail, and in high-speed services

Thank you for your attention

Marine Gorner marine.gorner@iea.org

© OECD/IEA 2016